The Computation and Measurement of Residual Stresses in Laser Deposited Layers
نویسندگان
چکیده
Laser metal forming is an attractive process for rapid prototyping or the rebuilding of worn parts. However, large tensile stress may arise in layers deposited by laser melting of powder. A potential solution is to preheat the substrate before and during deposition of layers to introduce sufficient contraction during cooling in the substrate to modify the residual stress distribution in the deposited layers. To demonstrate the value of this approach, specimens were prepared by depositing stellite F on a stainless steel substrate with and without preheating. Residual stresses were computed by numerical simulation and measured using the crack compliance method. For non-preheated specimens simulation and experiment agreed well and showed that extremely high residual tensile stresses were present in the laser melted material. By contrast, pre-heated specimens show high compressive stresses in the clad material. However, in this case the numerical simulation and experimental measurement showed very different stress distribution. This is attributed to out of plane deformation due to the high compressive stresses which are not permitted in the numerical simulation. A ‘‘strength of materials’’ analysis of the effect of out of plane deformation was used to correct the simulation, Agreement with experimental results was then satisfactory. @DOI: 10.1115/1.1584493#
منابع مشابه
Experimental and Numerical Study of Residual Stress in the WC-12Co HVOF Sprayed Coatings
Thermally sprayed coatings are intrinsically associated with residual stresses in the deposits. These stresses are varied in nature and magnitude, and have a pronounced effect on the mechanical behavior of the system. In the current study, WC-12Co coatings were deposited using HVOF thermal spraying. The sin2ψ method was used to evaluate the through thickness residual stress by means ...
متن کاملPlasticity Effect on Residual Stresses Measurement Using Contour Method
Residual stresses have become an important player in the field of the structural integrity for many years. Having an exact knowledge of residual stress distributions can be essential in designing the engineering components as unexpected failures are inevitable where such stresses are ignored. There are many residual stresses measurement techniques including destructive and non-destructive ones...
متن کاملResidual Stresses Measurement of a Quenched Cylinder using Slitting Method
Residual Stress measurement has gained interests among researchers for many years due to its great influence on the structural integrity. Slitting method is one of the destructive techniques that relies on the introduction of an increasing cut to a part containing residual stresses. Similar to all other mechanical strain relief techniques, slitting also suffers from its shortcomings during the ...
متن کاملResidual Stresses Measurement in Hollow Samples Using Contour Method
Residual stresses are created usually undesirably during manufacturing processes, including casting, welding, metal forming, etc. Residual stresses alone or in combination with other factors can cause the destruction and fracture of components or significant decline in their service life. Therefore, it is crucial to measure the residual stresses. Contour method is a destructive testing method c...
متن کاملExperimental and Numerical Investigation of Laser Assisted PC to Polycarbonate Welding
Laser welding is a novel method for direct joining of metals and polymers, which leads to a mechanical and chemical bond between metal and polymer. In this study, feasibility of dissimilar joining between St12 and polycarbonate is studied theoretically. Then, the ND: YAG laser is implemented to join St12 and Polycarbonate. Empirical results indicate creation of a joint between St12 and polycarb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003